GR	OUP : FIRST	11"" CL/	4SS – 1" A	nnual 2024	MARKS:17		
			OBJECT	IVE			
AU.	TF: You have fo	our choices for ea	ch objective ty	pe question as A , B ,	C and D . The choice which		
	wou think is correct, fill that circle in front of that question number. Use marker or pen to fill						
	the circles. Cutting or filling two or more circles will result in zero marks in that question.						
QI	UESTION NO. 1			DGK	-1-24		
1		+ HCl	NaCl + H₂O	the change in enthalp	y is called :		
	(A) Heat of neutraliz			of reaction			
	(C) Heat of formation		(D) Heat of	of combustion			
2	An excess of silver ni	trate is added to	barium chlori	ide solution and precip	itates removed by		
_	filtration , what are t						
	(A) Ba ²⁺ and NO ₃ o			, Ba ²⁺ and NO ₃ only			
				, NO ₃ and Cl			
	(C) Ag ⁺ and NO ₃ o			- Marine	•		
3	Which of the following						
	(A) 18 % solution of			(B) 6.0% solution of			
	(C) 5.85 % solution			(D) All have the same	polling point		
4	If a strip of Cu metal		ution of FeSO	4: \			
	(A) Cu will be deposit			B) Fe is precipitated or			
	(C) Cu and Fe both di	ssolved ,	•	D) No reaction takes p			
5	With increase of 10 °	C temperature t	he rate of rea	ction-doubles. This inc	rease in rate		
	of reaction is due to:						
- 1				n¢rease in activation e	nergy of reactants.		
	(C) Decrease in activa	ation energy of r	eaction.				
	(D) Decrease in the n		ons between r	eactant molecules.			
6	One mole of SO ₂ cor		1	-323	I. I		
	(A) 6.02×10^{23} ator			6.02×10^{23} atoms of	sulphur		
	(C) 18.1 x 10 ²³ mole	ecules of SO ₂		4 gram atoms of SO ₂			
7	How many particles	are called funda	mental partic	es of an atom ?			
	(A) 3 (B) 5	(C) 100	(D) 6				
8	What are the units o	f R _f value ?					
	(A) Cm (B) Cm	n^3 (C) dm	(D) N	o units			
9	Which of the following		ie?				
,	(A) Naphthalene	(B) lodine	(C) Ar	nmonium chloride	(D) MnO ₂		
10	If absolute temperat	ure of a gas is do	publed and the	e pressure is reduced t	o one half , the		
	volume of the gas wi						
	(A) Be doubled		_/4 (C) Ind	creases four times	(D) Remain unchanged		
11	Partial pressure of o	xygen in lungs (ir	torr) is:				
	(A) 150 (B) 116		(D) 159				
12	Molecules of CO ₂ in	/	:				
	(A) Molecular crystal			Covalent crystals	(D) Any type of crystals		
13							
10	(A) Tomporature	(R)Intermo	lecular forces	(C) Surface area	(D) Pressure		
14	Wave number of the	light emitted by	a certain sou	rce is $2 \times 10^6 \mathrm{m}^{-1}$. The	wavelength of		
	this light will be:						
15	1) 500 m (C)	200 n.m	(D) 5×10^7 m			
15	D !!						
13			γ - rays	(D) Positive rays			
16	Which of the followi			moment?			
10	(A) NH ₃ (B) CHC		(D) H ₂ O				
17	The bond order of he	•					
τ/	(A) 3 (B) 2	(C) 1	(D) Zer	0			
	(1) 3 (1) 2						
	17 (Obj) - 1 st A	nnual 2024	SEOUFN	CE-4 (PAP	PER CODE - 6487)		
	1/ (On)) - 1 A	IIIIUUI 2027	· · ·	7			
		V					

GROUP: FIRST

CH	IEMISTRY 国际 TIME: 2 HRS 40 MIN	UTES					
GROUP : FIRST SUBJECTIVE PART MARKS: 68							
Gr	SOBJECTIVE TAKE						
OUESTION NO. 2 Write short answers to any Fight (8) of the following DGK-1-24 16							
	QUESTION NO. 2 WITE SHOTE UNSWEIS to dry Light (o) of the following						
1	N ₂ and CO have the same number of electrons, protons and neutrons, justify.						
ii iii	Law of conservation of mass have to be obeyed during stoichiometric calculations, explain. Why actual yield is always less than theoretical yield?						
iv	Write two suitable uses of the technique of chromatography						
v	In solvent extraction technique, why repeated extractions using small portions of solvent are more						
	efficient than using a single extraction but larger volume of solvent.						
vi	How undesirable colours in crystallization process can be removed ?						
vii	Write formulas to interconvert various scales of temperature.						
viii	How density of an ideal gas can be calculated from ideal gas equation?						
ix	Derive Charle's law by kinetic equation of gases.	8					
х	What is Handerson equation and for what purpose it is used?						
хi	What are applications of buffer solutions in daily life?						
xii	Derive ionic product of water and what is its value at 25°C.						
QUES	TION NO. 3 Write short answers to any Eight (8) of the following	16					
i	Why intermolecular forces are weaker than intramolecular forces?						
li	What are advantages of Vacuum distillation ?						
iii	Differentiate between Isomorphism and polymorphism.						
iv	Diamond is hard and electrical insulator. Justify it.						
V	Explain Atomic Emission Spectrum. Define (a) Wave number (b) Frequency Write electronic configuration of Crad and Znao						
vi	Define (a) Wave number (b) Frequency						
vii	White electronic configuration of creat and angular						
viii	What is Moseley's law? Give its mathematical expression.						
ix	What do you mean by water of crystallization? Give an example.						
x xi	Why NaCl and KNO ₃ are used to lower the melting point of ice? Differentiate between instantaneous and average rate of a reaction.						
xii	What do you mean by Homogeneous catalysis? Give an example.						
1	TION NO. 4 Write short answers to any Six (6) of the following	12					
i	How does the hybridization scheme explain the bond length?	 					
ii	Define electron affinity. Name the factors affecting it.						
iii	The radius of an atom cannot be determined precisely. Give the reason.						
iv	Why do the lone pairs of electrons on an atom occupy more space than bond pairs?						
v	Define standard enthalpy of formation. Give an example.						
vi	Define exothermic reaction. Give an example.						
vii	Differentiate between spontaneous and non-spontaneous process.						
viii ix	What is anodized aluminium? Give the electrode reactions during the recharging of lead accumulator.						
1.7	SECTION-II						
Note:		3 = 24					
Q.5.(1+3					
(E		1+3					
Q.6.(/		4					
(E	3	4					
12	unknown gas. Calculate the molar mass of unknown gas.						
Q.7.(A		1+3					
(B	2 0	4					
Q.8.(A		4					
Q.0.(/		4					

What are continuous and discontinuous solubility curves ? Draw these curves to explain the answer.

Q.9.(A)

(B)

2+2

2+2

GROUP: SECOND	11 CLASS -	L ^{ac} Annual 2024	4 MARKS:17
		CTIVE	
NOTE: You have four choices for each objective type question as A , B , C and D . The choice wh			
you think is correct, fill that circle in front of that question number. Use marker or pen the circles. Cutting or filling two or more circles will result in zero marks in that question.			number. Use marker or pen to mi
QUESTION NO. 1			Day-2-24
	diffusion of gases NH ₃ , S	O ₂ , Cl ₂ and CO ₂ is	
			$CO_2 > NH_3$ (D) $NH_3 > CO_2 > Cl_2 > SO_2$
2 Partial pressure of or		1	
-		orr (D) 116 tor	r .
	ng is a Pseudo solid ?	• •	
(A) CaF ₂ (B) Glas			
	ons which surround each		crystal is :
(A) 4 (B) 6	(C) 8 (D) 12		,
	e positive rays is maximu	m for ·	
(A) H_2 (B) H_e	(C) O_2 (D) N_2		
	ons present in $_{19}K^{39}$ is:		
(A) 18 (B) 19	(C) 20 (D) 39		
	ng has zero dipole mome	nt ?	
	I_3 (C) H_2^2 O (D) C		
1 Al O aba watia b		G ₂	
	2:1 (C) 2:3	(D) 3:2	60.
9 Calorie is equivalent		-0	
	41.84 J (C) 4.184 J	(D) 418.4, J	
10 The pH of human blo		25	
(A) 7.0 (B) 7.35	(C) 4.0 (D) 6	5	
	of N_2 and $8 g$ of O_2 , the	mole fraction of O	o _z is
(A) 1 (B) 0.1	(C) 0.5 (D) 0.		
	ctrical energy is converte	d into chemical ener	gy is called :
(A) Galvanic cell	(B) Elec	rolytic cell	
(C) Fuel cell	(D) Den	iel cell	
	which catalyzes the C ₆ H ₁	₂ O ₆ > 2C	C ₂ H ₅ OH + 2CO ₂ :
	Zymase (C) Urease		
14 18 g of H ₂ O sample h	nas:		
(A) 1 mole of H - at		0.5 mole of O - ato	om
(C) 6.22 x 10 ²³ mole		5.02 x 10 ²³ molecules	s of H ₂ O
1	itrogen in ammonia is :		
(A) (14/34) x 100	(B) (14/17) x 100	(C) (3/17) x	100 (D) (28/38) x 100
	lowing does not undergo	sublimation :	
) Naphthalene	(C) NH ₄ Cl	(D) Iodine
	es at which the solutes m	ove in paper chroma	itography depend on :
(A) Size of paper		B) R _f value of solute	
(C) Temperature of			matographic tank used
(-)	- I - I - I - I - I - I - I - I - I - I		
121 (Obj) – 1 st Anı		QUENCE – 2	(PAPER CODE - 6484)

CLASS - 1" Annual 2024

CHEMISTRY **GROUP: SECOND**

TIME: 2 HRS 40 MINUTES

MARKS: 68

SUBJECTIVE PART

SECTION-I

DaV-2-2425

QUI	STION NO. 2 Write short answers to any eight (8) of the following	DUR	2 0)	10
i	Process of cation formation is endothermic. Justify.			
ii	What are homoatomic and heteroatomic molecules? Give one example of each.			
iii	Why actual yield is always less than theoratical yield?			
iv	How rate of filtration can be increased ?			
V	What is safe and reliable method for drying the crystals?			
vi	Give two characteristics of ideal solvent used for crystallization.			
vii	Define isotherm. What is the effect of temperature on isotherm?			
viii	What is quantitative definition of Charle's law? Give its mathematical form.			
ix	Define critical temperature. On which factor does it depends			
х	Define pH and pOH. Give its mathematical form.			
Хi	Define common ion effect. Give one example.		•	
xii	What are acidic and basic buffers. Give one example of each.			

QUESTION NO. 3 Write short answers to any Eight (8) of the following

16

:	Define Lattice energy. Give example.
	Define Lattice energy. Give example.
	M/hy transition towns and we is about he also at he is all the information of the informa
ii	Why transition temperature is shown by elements having allotropic forms and by compounds showing
	polymorphism. Give example.
•••	

iii lodine dissolves readily in Tetrachloromethan. Give reason.

Water and ethanol can mix easily and in all proportions. Give reason. iv

Prove that $\mathbf{E} = \mathbf{h} \mathbf{c} \, \overline{\mathbf{v}}$

Complete (or) write balanced equation for two Nuclear reactions.

(a) ${}^{4}_{2}He + {}^{9}_{4}Be \longrightarrow ?$ (b) ${}^{14}_{7}N + {}^{1}_{0}n \longrightarrow ?$

(a)
$${}_{2}^{4}$$
He + ${}_{4}^{9}$ Be \longrightarrow ?

vii Why is it necessary to decrease the pressure in the discharge tube to get the cathode rays?

How neutrons are used in the treatment of Cancer? viii

ix One molal solution of urea in water is dilute as compared to one molar solution of urea, but the number of particles of the solute is same. Justify.

Differentiate between ideal and non-ideal solutions. X

χi The rate of a chemical reaction is an ever changing parameter under the given conditions. Give reason.

xii What is Pseudo first order reaction?

QUESTION NO. 4	Write short answers to	any Six (6) of the following

12

i	Dipole moment of CO2 is zero, but that of	502	is 1.61 D	why?
ii	Anionic radius is more than its parent atom	why	/ ?	•

iii Draw geometry of BeCl₂ molecule on the basis of VSEPR theory.

Define covalent radius. Give one example. iv

Define thermochemistry. v

vi State standard enthalpy of solution. Give example.

Define internal energy. vii

viii Draw diagram of voltaic cell.

Define electrochemistry. ix

SECTION-II

Note: A	ttempt any Three questions from this section	$8 \times 3 = 24$			
Q.5.(A)	What is stoichiometry? Give its assumptions. Mention two laws which help to perform the stoichiometric calculation				
(B)	Define vapour pressure of liquids. Also explain manometric method for its determination.	1+3			
Q.6.(A)	Calculate the density of CH_4 (g) at 0 $^{\circ}C$ and 1 atmospheric pressure.				
(B)	Describe Millikan's oil drop method to measure the charge on electron.	4			
Q.7.(A)	. Write down the four postulates of VSEPR theory.				
(B)	N_2 (g) and H_2 (g) combine to give NH_3 (g). The value of K_C in this reaction at 500 $^{\circ}C$ is 6.0 x 10^{-2} .				
	Calculate the value of K _p for this reaction.				
Q.8.(A)	Define the following with examples. (i) Enthalphy (ii) Exothermic reaction (iii) Boundary (iv) Enthalpy of atomization	on			
(B)	Write any four industrial importance of electrolytic process.	4			
Q.9.(A)	Derive a relationship for $M_2 = \frac{K_b}{\Delta T_b} \cdot \frac{1000W_2}{W_1}$	4			
(B)	What do you the mean by the term "order of reaction"? Explain by giving any three suitable examples.	1+3			